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Appendix Table S1. Overview of patients and healthy donors. 

Age (years)   

CLL patients Median 62 
  Range 47-79 
Healthy donors Median 57 
  Range 51-70 

Female  Number % 
CLL patients   7 30 
Healthy donors   31 41 

Leukocyte count (109/liter)    

CLL patients Median 101.4 
  Range 37.5 - 280.6 

Stage  Number % 

CLL patients A 12 52 
  B 6 26 
  C 2 9 
 n.a. 3 13 

Aberration  Number % 

CLL patients del13q 16 80 
  del13q single 13 65 

IgV(H) mutational status Number % 

CLL patients mutated 14 61 
  unmutated 9 39 
 

 
Healthy donor samples were age-matched to the CLL cohort with a median age of 57 years, compared 
to 62 years median age of CLL patients. 30% of CLL patients and 41% of healthy donors were female. 
High leukocyte counts with a median cell number of 99.6·109/liter in CLL patients reflect the result of 
the watch-and-wait treatment strategy of these asymptomatic patients, 52% of them classified in Binet 
stage A, 26% as stage B and 9% as stage C. Most patients had beneficial genetic characteristics with 
70% harboring the favorable 13q chromosomal deletion and 61% a hypermutated IgV(H) status. These 
latter two features are associated with increased survival rates. For patient samples CLL20-22 the Binet 
stage and 13q status were not available. 
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Appendix Table S2. Deregulated transcription factors linked to aberrant CLL chromatin features. 

Binding motif name in 
Homer a   

Binding motif sequence 
logo       

Predicted TFs 
binding to motif b    

Sitec    Signal change in 
CLL d    

Activity/ 
expr. in 
CLL e    

NRF1(NRF)/MCF7-NRF1-
ChIP-
Seq(Unpublished)/Homer 

 

NRF1 Pro ATAC loss 
H3K4me3 ext. 

down 

NFY(CCAAT)/Promoter/ 
Homer 

 

NFYA, NFYB Pro ATAC loss 
H3K4me3 ext. 
Nuc. gain  

down/up 

KLF3(Zf)/MEF-Klf3-ChIP-
Seq(GSE44748)/Homer 

 

KLF3/11/16 f Pro ATAC loss 
H3K4me3 ext. 
Nuc. gain 

down 

Sp1(Zf)/Promoter/Homer 

 

SP1 Pro ATAC loss 
H3K4me3 ext. 
Nuc. gain 

up 

ERG(ETS)/VCaP-ERG-
ChIP-
Seq(GSE14097)/Homer 

 

ETS2, ETV4, 
ELF4, SPI1 
(PU.1), ERG  

Pro 
Enh 

ATAC loss 
H3K4me3 ext. (Pro) 
DMR loss (Enh) 
H3K27ac loss (Enh) 
Nuc. gain (Enh) 

down 

Mef2c(MADS)/GM12878-
Mef2c-ChIP-
Seq(GSE32465)/Homer 

 

MEF2A, MEF2D 
 

Pro 
Enh 

H3K4me3 loss (Pro) 
ATAC loss (Enh) 
DMR loss (Enh) 
Nuc. gain (Enh) 

down 

E2A(bHLH)/proBcell-E2A-
ChIP-
Seq(GSE21978)/Homer 

 

TCF4, TCF12 
(E protein family) 

Enh ATAC gain 
H3K27ac gain 

up 
 

TCFL2(HMG)/K562-
TCF7L2-ChIP-
Seq(GSE29196)/Homer 

 

LEF1 (TCF7/LEF 
family) 

Enh ATAC gain 
H3K27ac gain 

up 

NFAT(RHD)/Jurkat-
NFATC1-ChIP-
Seq(Jolma_et_al.)/Homer 

 

NFATC1 Enh ATAC gain 
DMR loss 
H3K27ac gain 

up 

Foxo3(Forkhead)/U2OS-
Foxo3-ChIP-Seq(E-MTAB-
2701)/Homer 

 

FOXP1, FOXN3 g 
 

Enh ATAC gain 
DMR loss 
H3K27ac gain 

up 

IRF8(IRF)/BMDM-IRF8-
ChIP-
Seq(GSE77884)/Homer 

 

IRF4, IRF8 Enh ATAC gain 
DMR loss 
H3K27ac gain 

up 
 

Egr1(Zf)/K562-Egr1-ChIP-
Seq(GSE32465)/Homer 

 

EGR1 h Enh ATAC gain 
DMR loss 
H3K27ac gain 

down 
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Jun-AP1(bZIP)/K562-cJun-
ChIP-
Seq(GSE31477)/Homer 

 

JUN, JUND, FOS, 
FOSL1/2 (AP-1) 

Enh ATAC loss 
H3K27ac loss 

down 

EBF(EBF)/proBcell-EBF-
ChIP-
Seq(GSE21978)/Homer 

 

EBF1 Enh ATAC loss 
H3K27ac loss 

down, 
binding 
lost i 

NFkB-
p65(RHD)/GM12787-p65-
ChIP-
Seq(GSE19485)/Homer  

NFKB2, RELA, 
RELB (NF-kB) 

Enh ATAC loss 
H3K27ac loss 

down 

RUNX2(Runt)/PCa-
RUNX2-ChIP-
Seq(GSE33889)/Homer 

 

RUNX2/3 Enh ATAC loss 
H3K27ac loss 

down 

CTCF(Zf)/CD4+-CTCF-
ChIP-
Seq(Barski_et_al.)/Homer 

 

CTCF Enh ATAC loss 
H3K27ac loss 

n. s., 
binding 
lost i 

a The TF binding motifs and and sequence logos are from Homer and were identified from the analysis 
of regions with differential ATAC-seq signal that additionally were associated with the indicated changes 
of chromatin features in CLL. 
b TF names are given according to the HUGO gene nomenclature committee (HGNC). Only those TFs 
were selected that showed a differential protein activity in CLL as opposed to other non-deregulated 
TFs that would recognize the same motif. 
c Pro, promoters according to the RefSeq data base; Enh, predicted enhancers according to the 
chromatin context annotation but with the motif analysis being conducted only within ATAC-seq peak 
regions within the region that displayed the indicated differential signal (Fig 5, S5). 
d H3K4me3 ext. refers to an extension of the H3K4me3 signal by 1-2 nucleosomes at promoters. 
H3K4me3 loss refers to promoters in a bivalent state (H3K4me3 and H3K27me3) that loose H3K4me3 
in CLL. In addition, changes in the ATAC-seq signal, gain/loss of nucleosomes and differential DNA 
methylation and H3K27a acetylation at enhancers were considered (Fig 6B). 
e In cases where the TF activity could not be reliably computed a change in gene expression (expr) was 
used if p-value < 0.01 and log fold change ≥ 1.7. 
f KLF3/11/16 act as repressors via interactions with CTBP2 (KLF3) or with SINA3 (KLF11/16) and 
compete with SP1 for binding to similar sites (Kaczynski et al, 2003; McConnell & Yang, 2010). 
g FOXP1 has 86 up- and 71 down-regulated target genes in the network. Thus, the protein appears to 
act both as an activator and repressor with an increased tendency to enhance gene expression. In 
addition to the canonical Forkhead motif GTAAACA, FOXN3 recognizes also the sequence GACGC 
(Rogers et al, 2019). 
h The EGR1 binding motif was associated with a gain of enhancer activity in CLL although both its 
activity and gene expression were found to be downregulated. Thus, the protein might act as a 
repressor in CLL, which would be in line with previous reports on inhibitory activities of EGR1 (Feng et 
al, 2015; Thiel & Cibelli, 2002). 
i The ChIP-seq analysis showed that EBF1 was lost at 826 sites and gained at 173 sites. Corresponding 
values for CTCF were 5964 and 441 sites in the absence of significant activity or expression changes. 
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Appendix Table S3. Comparison of EBF1 ChIP-seq data sets. 
 

Sample type 
  

Sample 
ID  

 EBF1 
peaks, 

ENCODE 

 EBF1 
peaks, 

this study 

peak 
overlap  

(%) 

Average 
overlap 

(%) 

EBF1 
expr. 

(RPKM) 

Average 
expr. 

(RPKM) b 

CLL IGHV-mut. CLL6 356 4057 8.8   0.105   
CLL IGHV-mut. CLL3 735 3411 21.5   0.050   
CLL IGHV-mut. CLL13 8616 109483 7.9 16.4 0.052 0.20±0.12 
CLL IGHV-mut. CLL7 902 4809 18.8   0.675   
CLL IGHV-mut. CLL4 4385 17362 25.3   0.095   
CLL IGHV-unmut. CLL11 46 5600 0.8   0.045   
CLL IGHV-unmut. CLL9 1487 4872 30.5 27.3 0.015 0.02±0.01 
CLL IGHV-unmut. CLL19 5335 10459 51.0   0   
CLL IGHV-unmut. CLL08 1215 4544 26.7   0.025   
NBC H14 768 3370 22.8   NA   
NBC H15 594 3852 15.4 36.5 NA 48.25±3.82 
NBC H16 3113 6388 48.7   NA   
NBC H17 6818 11583 58.9   NA   

 
a The EBF1 ChIP-seq data generated in this study were compared to peaks from the analysis of the 
ENCODE EBF1 ChIP-seq conducted with the human GM12878 cell line. 
b Average and standard error of expression of the EBF1 gene in the different cell types. For NBC the 
average of samples H1, H3-5 and H7-9 was used. It is apparent that EBF1 is essentially silenced in 
both CLL IGHV mutated and unmutated samples as compared to the healthy references although there 
is a very low level of expression in IGHV mutated samples.  
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Appendix Table S4. Antibodies used in this study. 

Antibodies Source Order number 
Rabbit polyclonal H3 Abcam ab1791 
Rabbit polyclonal H3K4me1 Abcam ab8895 
Rabbit polyclonal H3K4me3 Abcam ab8580 
Rabbit polyclonal H3K9me3 Abcam ab8898 
Rabbit polyclonal H3K9ac Active Motif 39917 
Rabbit polyclonal H3K27ac Abcam ab4729 
Rabbit polyclonal H3K36me3 Abcam ab9050 
Mouse monoclonal H3K27me3 Abcam ab6002 
Rabbit polyclonal beta-actin Abcam ab8227 
Goat polyclonal EBF1 Sigma-Aldrich SAB2501166 
Rabbit polyclonal CTCF Active Motif 61311 
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Appendix Table S5. ENCODE transcription factor binding site chromatin state enrichment. 

Cluster 1 IKZF1, BCL11A, BATF 
Cluster 2 EBF1, SPI1, MEF2C, NFATC1, IRF4, MEF2A 
Cluster 3 RUNX3, NFIC, MTA3, FOXM1, ATF2 
Cluster 4 ESR1, GATA2, ZNF217 
Cluster 5 MAFK, MAFF, GATA3, FOS, FOXA2, CTCF, RAD21, FOXA1, POU5F1, EP300, STAT3, 

TAL1, CEBPB, JUN, FOSL2, RXRA, JUND, TEAD4, FOSL1, SMC3, HNF4G, HNF4A 

Cluster 6 CTBP2, EZH2, SUZ12 
Cluster 7 ZNF274, SETDB1 
Cluster 8 KAP1, TRIM28, CBX3, FAM48A, BRF2, SIRT6, JUNB, GATA1, NR2F2, ARID3A, 

PRDM1, STAT5A, BCL3, PBX3, PAX5, POU2F2, WRNIP1, TCF3, TBL1XR1, RELA 

Cluster 9 HDAC6, BACH1, CTCFL, YY1, ZZZ3, TCF7L2, REST, TFAP2A, TFAP2C, EGR1, MAZ, 
HDAC2, SMARCC1, MAX, MYC, NANOG, ZNF263, ZNF143, POLR2A, ESRRA, USF1, 
NR3C1, HDAC8, SMARCA4, RCOR1, TCF12, BHLHE40, SP1, USF2 

Cluster 10 BRF1, POLR3G, KDM5A, GRp20, RDBP, THAP1, IRF3, SIX5, GTF2B, ELK4, ELK1, 
SAP30, PHF8, KDM5B, NRF1, SREBP1, SP2, ETS1, IRF1, NR2C2, NFYA, BRCA1 

Cluster 11 ZBTB7A, FOXP2, E2F1, RBBP5, UBTF, E2F6, SIN3A, SMARCB1, GTF2F1, HSF1, 
ZBTB33, TAF1, ZKSCAN1, GABPA, CHD1, CEBPD, CCNT2, SIN3AK20, HMGN3, SP4, 
CREB1, HDAC1, TAF7, E2F4, BDP1, RPC155, SMARCC2, STAT1, ATF3, SRF, NFYB, 
GTF3C2, RFX5, MYBL2, PPARGC1A, STAT2, ATF1, NFE2, MBD4, PML, BCLAF1, 
ZEB1, MXI1, TBP, ELF1, CHD2 

 
Analysis of the ENCODE transcription factor binding sites was performed using ChromHMM overlap 
enrichment using default parameters. For the enrichment of chromatin states of these 161 transcription 
factors, we identified 11 clusters, which were averaged and are shown in Fig. EV4B. Selection of the 
clusters was determined based on the dendogram of hierarchical clustering of the patterns using the 
hclust function in R. 
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Appendix Table S6. Inventory of appendix data sets. 

File Name Figure/ 
table ref. Description 

Dataset_EV01-overview_datasets.xlsx Fig 1-6, 
EV1-5, 
S1-5 

Overview of the appendix data sets EV2-14. 

Dataset_EV02-samples.xlsx Fig 1, 
Fig S1, 
Table S1 

Sample meta data describing sample names, origin, 
sex, alternative IDs and taxonomic data. 

Dataset_EV03-meC.xlsx 
3.1 CLL-PMDs 

Fig 2, 
Fig EV2, 
Fig S2 

Merged consensus list of PMDs identified. The 
consensus PMDs were generated as the union of 
PMDs present in at least half of the CLL samples 
analyzed (≥6). Data are in BED format. 

Dataset_EV03-meC.xlsx 
3.2 DMRs 

Fig 2, 
Fig EV2, 
Fig S2 

DMRs identified comparing CLL to NBC samples. The 
R tools DSS was used with default parameters, with p-
value < 0.05 in regions at least 200 bp with a minimum 
methylation change of 0.3. Data are in BED format. 

Dataset_EV04-histone-ChIPseq-
QC.xlsx  

Fig 1 Quality parameters describing histone ChIPseq quality 
for each sample, and inclusion of sample in 
ChromHMM model generation and differential histone 
modification analysis. 

Dataset_EV05-promoters.xlsx 
5.1 H3K4me3 broad 

Fig 3, 
Fig EV3 

Promoters with H3K4me3 broadening in CLL. 
Promoters must exhibit a significant (p-value < 0.05) 
gain of at least 2 nucleosomes (400 bp). Data are in 
BED format. 

Dataset_EV05-promoters.xlsx 
5.2 H3K4me3 broad and nuc. gain 

Fig 3, 
Fig EV3 

Promoters (TSS +/- 1 kb) which gain nucleosomes in 
CLL. Data are in BED format.  

Dataset_EV05-promoters.xlsx 
5.3/5.4 Bivalent promoters lost/gained 

Fig 3, 
Fig EV3 

Bivalent promoters as identified by the clustering in Fig 
3F. Data are in BED format. 

Dataset_EV06-ChromHMM-model.xlsx 
6.1-6.4 ChromHMM model 

Fig 1 Chromatin 12 state model emission parameters (6.1), 
state descriptions (6.2), transition parameters (6.3), 
model (6.4). 6.1, 6.3-6.4 are directly from the output of 
ChromHMM model generation. 

Dataset_EV06-ChromHMM-model.xlsx 
6.5 Links to 12 state model  

Fig 1 Hyperlinks to the 12 state chromatin segmentations of 
samples including all CLL, NBC, and 
panobinostat/mock treated samples at 24 hours. Linked 
Data are in BED format. 

Dataset_EV07-ChromHMM-merged-
states.xlsx 

Fig 1 Merged chromatin states occuring in at least 3 samples 
(A-L) for each chromatin state. Data are in BED format. 

Dataset_EV08-ChIPseq-dif_histone-
mod_CTCF_EBF1.xlsx 
8.1 Histone modifications  

Fig 3-6 Differential histone modifications regions for each of the 
7 histone modifications comparing CLL to NBCs using 
only samples passing QC. Data are in BED format. 

Dataset_EV08-ChIPseq-dif_histone-
mod_CTCF_EBF1.xlsx 
8.2 Diff H3K27ac PS 24 h 

Fig 4, 
Fig S4 

Differential H3K27ac at enhancer regions between 
panobinostat treated and control CLL samples at 24 
hours (using CLL + PS 24h enhancers as background). 
Analysis performed using DiffBind paired analysis with 
a FDR threshold of 0.01. 

Dataset_EV08-ChIPseq-dif_histone-
mod_CTCF_EBF1.xlsx 

Fig 5 Differential ChIP-seq of CTCF comparing CLL to NBCs. 
Data are in BED format. 
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8.3 CTCF ChIP-seq  
Dataset_EV08-ChIPseq-dif_histone-
mod_CTCF_EBF1.xlsx 
8.4 EBF1 ChIP-seq  

Fig 6 Differential ChIP-seq of EBF1 comparing CLL to NBCs. 
Data are in BED format. 

Dataset_EV09-enhancers.xlsx 
9.1-9.6 CLL and NBC 

Fig 4, 
Fig EV4, 
Fig S4 

Putative enhancer regions from ChromHMM states 1, 
8, 9, 11 and super-enhancer called from H3K27ac and 
ATAC in CLL + NBC, CLL, NBC. Data are in BED 
format. 

Dataset_EV09-enhancers.xlsx 
9.7-9.9 Differential enhancers 

Fig 4, 
Fig EV4, 
Fig S4, 
Fig 5 

Differential predicted (super-)enhancers loci between 
CLL and NBC samples (min3) as well as enhancer 
state changes that occur in panobinostat treated 
samples. Analysis performed using DiffBind with FDR 
threshold of 0.01. Data are in BED format. 

Dataset_EV09-enhancers.xlsx 
9.10-9.11 Active enhancers  

Fig 4, 
Fig 5, 
Fig S6, 
Fig 6, 
Fig S8 

“Active enhancers in CLL” (occuring in at least 3 
patients) or “active enhancers in NBC” (occuring in at 
least 1 NBC) determined from ATAC-seq. 

Dataset_EV09-enhancers.xlsx 
9.12-9.13 Active Bidi enhancers 

Fig EV4, 
Fig S4 

Consensus list of active enhancers with bidirectional 
transcription in CLL (occuring in at least 3 patients) or 
NBC (occuring in at least 2 NBC). 

Dataset_EV10-ATAC.xlsx 
10.1 Differential ATAC 

Fig 1, 
Fig EV1, 
Fig 3, 
Fig 5, 
Fig S8 

Differential ATAC peaks between CLL and NBC (fixed 
and viably frozen samples). Analysis was performed 
using DiffBind with thresholds of FDR 0.00095 and fold 
change < -2.15 or fold change > 1.55. Data are in BED 
format. 

Dataset_EV10-ATAC.xlsx 
10.2 Diff ATAC (only fixed samples) 

Fig S5 Differential ATAC peaks between all fixed processed 
CLL and NBC samples. Analysis was performed using 
DiffBind with thresholds of FDR 0.00759 and fold 
change < -1.5 or fold change > 1.8. Data are in BED 
format. 
 

Dataset_EV10-ATAC.xlsx 
10.3 HOMER-Gained diff ATAC enh 

Fig 5 Homer analysis results of enriched motifs in gained 
ATAC sites between CLL and NBC within potential 
enhancer regions regions defined by ChromHMM 
states 1, 8, 9 and 11. 

Dataset_EV10-ATAC.xlsx 
10.4 HOMER-Lost diff ATAC enh 

Fig 5 Homer analysis results of enriched motifs in lost ATAC 
sites between CLL and NBC within potential enhancer 
regions defined by ChromHMM states 1, 8, 9 and 11. 

Dataset_EV10-ATAC.xlsx 
10.5 Used known HOMER motifs 

Fig 5 Position weight matrices of known motifs used for 
HOMER motif analysis. 

Dataset_EV10-ATAC.xlsx 
10.6/10.7scATAC-seqPE-pairs 

Fig 5, 
Fig S6 

Enhancer-promoter pairs that showed the highest 
correlations in CLL and NBCs within a 200 kb window. 

Dataset_EV10-ATAC.xlsx 
10.8-10.10 Differential CTCF sites 

Fig 5, 
Fig EV5, 
Fig S6 

Differential ATAC peaks overlapping with CTCF binding 
sites in the GM12878 lymphoblast cell line (ENCODE). 
Data are in BED format. 

Dataset_EV10-ATAC.xlsx 
10.11 cons. ATAC peaks 

Fig 5, 
Fig S5 

ATAC-seq peak regions found in at least four replicates 
across all CLL samples and NBC controls (consensus 
region list derived with DiffBind). 
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Dataset_EV11-RNAseq-dif-gene-
expr.xlsx 
11.1 Differential expression of CLL 
genes 

Fig 1, 
Fig 6,  
Fig S7 

Gene expression differences in CLL vs NBC identified 
with DEseq2 (gencode 17). 

Dataset_EV11-RNAseq-dif-gene-
expr.xlsx 
11.2 Diff intronic RNA PS 24h 

Fig 4, 
Fig S4 

Gene expression differences of nascent transcripts. 
Analysis was performed using DESeq2 on intronic RNA 
reads as a proxy for nascent transcript levels between 
panobinostat treated and control CLL samples at 24 
hours. 

Dataset_EV12-chromatin-expr-
changes.xlsx 

Fig 6 Co-occurence of differential gene expression and 
changes of chromatin features in CLL. 

Dataset_EV13-Bcell-network.xlsx 
13.1 ARACNE network 

Fig 1, 
Fig 6, 
Fig S7 

Gene regulatory B cell network constructed with 
ARACNE-AP (default parameters) based on the B cell 
gene expression data set from Basso et al (Basso et al, 
2005). The text file includes all the regulator to target 
gene interactions, the type of interaction and its 
likelihood. The network can be visualized with 
Cytoscape. 

Dataset_EV13-Bcell-network.xlsx 
13.2 VIPER 

Fig 1, 
Fig 6, 
Fig S7 

Regulator activities calculated with VIPER using the 
regulatory B cell network and the RNA-seq data from 
our study. The table shows all regulators and 
differential activity between CLL and control samples. 

Dataset_EV13-Bcell-network.xlsx 
13.3 Enhancer-promoter interact 

Fig 1, 
Fig 6, 
Fig S7 

Enhancer-promoter interactions with a correlation of 
0.22 or higher from the scATAC-seq analysis that were 
integrated into the network. 

Dataset_EV13-Bcell-network.xlsx 
13.4 CLL-specific GREN 

Fig 1, 
Fig 6, 
Fig S7 

Gene regulatory enhancer containing network that 
includes the connected part of the transcription factors, 
chromatin modifiers and target genes deregulated in 
CLL from our study. 

Dataset_EV13-Bcell-network.xlsx 
13.5 Aberrant factors CLL 

Fig 1, 
Fig 6, 
Fig S7 

Overview of all deregulated genes from the different 
analyses. 

Dataset_EV14_CLLspecific_GREN.cys  Fig 1, 
Fig 6, 
Fig S7 

Gene regulatory enhancer containing network that 
includes the connected part of the transcription factors, 
chromatin modifiers and target genes deregulated in 
CLL from our study for visualization with the Cytoscape 
viewer. For each TF in Table S2 a subnetwork was 
created. 
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Appendix Table S7. Data analysis software. 

Software Ref. Link 
Bowtie (Langmead et al, 2009) bowtie-bio.sourceforge.net/bowtie2/index.shtml 
MACS (Zhang et al, 2008) https://github.com/taoliu/MACS 
SICER (Zang et al, 2009) github.com/razZ0r/sicer 
ChromHMM (Ernst & Kellis, 2012) compbio.mit.edu/ChromHMM/ 
MCORE (Molitor et al, 2017).  malone.bioquant.uni-

heidelberg.de/software/mcore/ 
NucTools  (Vainshtein et al, 2017) generegulation.info/index.php/nuctools 
HOMER  (Heinz et al, 2010) homer.ucsd.edu/homer/ 
ROSE (Loven et al, 2013; 

Whyte et al, 2013) 
bitbucket.org/young_computation/rose 

GREAT (McLean et al, 2010) bejerano.stanford.edu/great/public/html/index.p
hp 

STAR (Dobin et al, 2013) github.com/alexdobin/STAR 
DiffBind (Ross-Innes et al, 

2012) 
doi.org/10.18129/B9.bioc.DiffBind 

chromVAR (Schep et al, 2017) greenleaflab.github.io/chromVAR/ 
ARACNe-AP (Lachmann et al, 2016) sourceforge.net/projects/aracne-ap/ 
VIPER (Alvarez et al, 2016) doi.org/10.18129/B9.bioc.viper 
Cytoscape (Shannon et al, 2003) cytoscape.org 
DAVID (Huang da et al, 2009) david.ncifcrf.gov 
gProfileR (Reimand et al, 2016) https://biit.cs.ut.ee/gprofiler/ 
DESeq2 (Love et al, 2014) doi.org/10.18129/B9.bioc.DESeq2 
GenomicRanges (Lawrence et al, 2013) doi.org/10.18129/B9.bioc.GenomicRanges 
Trimmomatic (Bolger et al, 2014) http://www.usadellab.org/cms/?page=trimmom

atic 
Bioconductor R 
packages: 
GenomicRanges, 
Gviz, DSS, minfi, 
EnrichedHeatmap,  

(Gentleman et al, 2004) www.bioconductor.org 

BWA (Li & Durbin, 2010) bio-bwa.sourceforge.net 
methylCtools (Hovestadt et al, 2014) https://github.com/hovestadt/methylCtools 
Integrative 
Genomics Viewer 

(Robinson et al, 2011) software.broadinstitute.org/software/igv/ 

4D Genome data 
base 

(Teng et al, 2014) https://4dgenome.research.chop.edu/Downloa
d.html 

SAMtools (Li et al, 2009) http://samtools.sourceforge.net/ 
bedtools (Quinlan & Hall, 2010) http://bedtools.readthedocs.io/en/latest/ 
Centipede (Pique-Regi et al, 2011) http://centipede.uchicago.edu 
Custom analysis 
scripts 

This paper https://github.com/CancerEpiSys/Mallm-et-al-
processing-scripts 

RWire This paper https://github.com/FabianErdel/RWire 
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Appendix Figure S1. Data quality assessment and analysis workflow. 

(A) The top panel lists all the CLL samples derived from individual CLL patients and NBC controls 
collected from healthy donors. Bottom panels show the quality metrics of genome-wide chromatin 
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feature and gene expression profiles. Data sets missing for individual samples are marked with striped 
bars. Average coverage at CpG sites was evaluated for the WGBS data, and low-coverage sample H4 
was removed from further DNA methylation analysis. Variation in sample preparation for RNA-seq was 
assessed using average Pearson correlation among NBC and CLL samples. All samples displayed 
Pearson correlations >0.94 and were included in the analysis. The fraction of reads in peaks and relative 
strand cross-correlation were used to assess the quality of ATAC-seq and ChIP-seq samples as 
visualized in the heatmap. Only high-quality ChIP-seq data sets were included for the ChromHMM 
model generation step. For scATAC-seq cells with a very high or very low number of integrations were 
removed (Materials and Methods). (B) Data analysis workflow. The data generated in this study (grey, 
red outline) together with data from the literature (grey) were analyzed with the indicated methods (blue, 
Appendix Table S7). From the intersection of deregulated chromatin features with ATAC-seq peaks a 
set of TFs was identified based on a binding motif analysis. Those TFs that also displayed a differential 
activity were selected to extract the connected part of the B cell regulatory network (GRN, Dataset 
EV13). From the scATAC-seq analysis, promoter and enhancers that showed high correlations for 
being simultaneously accessible in the same cell were extracted. This enhancer-promoter network was 
integrated with the GRN to create a gene regulatory enhancer containing network (GREN, Dataset 
EV14). From the GREN a “CLL specific GREN” was extracted. It connected the TFs, their target genes 
as well as linked chromatin modifiers affecting the aberrant chromatin features that were identified. 
Additionally, it was required that selected factors were deregulated in their activity and/or expression 
between CLL and NBCs. 
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Appendix Figure S2. Characterization of CLL-specific DNA methylation patterns. 

(A) Distribution of DNA methylation levels in CLL and NBC samples. (B) Genome-wide CpG 
methylation categorized into three groups: NBC (grey), low/intermediate programmed CLL (blue) and 
high programmed CLL (red). (C) Top: Average standard deviation of DNA methylation across samples. 
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Bottom: Fraction of intermediate DNA methylation (b-values between 0.4 and 0.6). (D) Examples of 
large partially methylated domains (PMDs) on chromosome 2, 3, and 4 derived from a consensus of 
CLL samples (n=11) in comparison to the NBC reference (n=6). (E) Scatter plot of H3K27me3 signal 
with DNA methyation in PMDs (blue) and non-PMD (grey) regions in CLL. H3K27me3 and meC were 
anticorrelated and on average PMDs had a higher H3K27me3/meC ratio, which points to a more 
silenced chromatin state. (F) Genome coverage of ChromHMM chromatin states as defined in Fig 1B 
for CLL (red) and NBC (grey) overlapping with PMD and non-PMD regions. (G) Distribution of chromatin 
states in differentially methylated regions (DMRs). DMRs were specifically enriched for the putative 
active (Act2, Act3) or poised (Pois) enhancer states. 
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Appendix Figure S3. Alternative promoter usage in CLL cells. 

(A) Exemplary region for an alternative promoter used in CLL that leads to an alternative transcript of 
the PITPNM2 gene. The signal shown corresponds to the active TSS state from ChromHMM analysis. 
The height of signal represents the number of samples in the active TSS state, and the maximum was 
set to all available samples for NBC controls and CLL patients. Gene tracks show transcriptome 
annotation estimated by StringTie. Blue color indicates upregulation in CLL compared to NBCs 
(FDR<0.05) and grey no differential expression detected (FDR>0.05). (B) Heatmap representing the 
activity of alternative promoters defined by ChromHMM annotation. Orange represents active 
promoters, grey inactive promoters overlapping with known Gencode transcripts. Only recurrent 
alternative promoters are shown. The left columns indicate in dark grey transcripts with a significant 
correlation between REPIN1, LEF1, FOXA1 and POU3F1 expression and alternative promoter usage 
(p < 0.05), while light grey indicates a lack of correlation (p > 0.05). 
  



A17 
 

 

Appendix Figure S4. Response of CLL cells to HDAC inhibition. 

(A) Scheme of ex-vivo treatment with the HDAC inhibitor panobinostat for 2 h or 24 h followed by RNA-
seq and ChIP-seq ananlysis. (B) Western blot of cell lysates from CLL cells that were treated with 5 nM 
panobinostat (PS) for 2 or 24 hours. Control cells were mock-treated with DMSO and cultured under 
the same conditions as panobinostat-treated cells. Detection with antibodies specifically recognizing 
acetylated lysine 9 (H3K9ac) or lysine 27 (H3K27ac) of histone 3 show a significant enrichment of 
acetylation levels in panobinostat-treated samples compared to mock-treated controls. b-actin served 
as loading control. (C) Survival of primary B cells upon incubation with panobinostat. After 24 hours of 
ex-vivo treatment with panobinostat at different concentrations, survival of primary CD19+ sorted B cells 
of a healthy donor was assessed by quantification of apoptotic cells with annexin and 7-AAD in flow 
cytometry. (D) Survival of CLL cells after incubation with panobinostat. Same as in panel C but for 
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CD19+ sorted B cells from a CLL patient. (E) Gene expression changes determined by intronic read 
counts using DESeq2. Log2 fold change above 0 indicates higher expression after treatment. 
Transcripts with BH q-value < 0.01 were considered to be differentially expressed. The response was 
more pronounced after 24 h (bottom plot) with up to 3-fold change in expression. Biological processes 
with enrichment of genes downregulated upon panobinostat treatment were identified with GREAT 
pathway analysis. Enriched GO terms were semantically clustered to superordinate terms. While 
affected genes at 2 h are primarily overrepresented in chromatin modification and histone acetylation, 
several additional processes are enriched after 24 h. Larger square sizes indicate smaller BH q-values 
of corresponding GO terms. 
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Appendix Figure S5. TF binding motif analysis at enhancers predicted by additional annotations. 

(A) Plot of the most enriched TF binding motifs in regions that showed gained (top) or lost (bottom) 
ATAC-seq signal (Appendix Dataset_EV10.2) at predicted enhancer regions represented by 
ChromHMM states 1 and 9. Similar TF binding motifs have the same color and represent binding motif 
classes. The size of the spots is proportional to the percentage of target sequences with that motif. The 
-log10 p-values (y-axis) were plotted against the log10 enrichment (x-axis) of sites with the motif in 
enhancers that gained/lost the ATAC signal using all ATAC-seq peak regions in the indicated 
ChromHMM states as background model. (B) Same as panel A but for poised/weak predicted 
enhancers regions from ChromHMM states 8 and 11. (C) Same as panel A but for ATAC peak regions 
at predicted enhancers annotated from H3K27ac peaks that gained (top) or lost (bottom) H3K27ac. 
(D) Same as in panel C but for super-enhancers called with the Rose software tool as described in 
Materials and Methods. 
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Appendix Figure S6. Single cell ATAC-seq analysis. 

(A) Single cell analysis of chromatin accessibility by ATAC-seq (scATAC-seq) from a total of 343 NBCs 
(2 donors) and 494 CLL cells (3 patients). Some ATAC insertion sites displayed a strong co-occurrence 
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in a subset of single cells. (B) Variation in accessibility of different TF binding motifs across CLL and 
NBCs. To the right, the 16 TF binding motifs that displayed the highest variability for being present in 
the open or closed state are listed. Most of the motifs were also found in the analysis of aberrant CLL 
chromatin features (Appendix Table S2). (C) The number of reads observed for each genomic region 
(1 kb tiles) was plotted. Blue dashed lines represent non-negative binomial distributions to approximate 
the background population while gray areas highlight open regions. With the given threshold (70 reads 
in 343 NBCs, see gray area in panel A) essentially all open regions identified by scATAC-seq were also 
present in the bulk ATAC-seq data from the same sample. (D) Estimation of correlation ‘background’ 
signal. For each promoter, the integration numbers were permuted across cells. Distribution values: 
mean, 0.028; median, 0.019; variance, 0.004; 1% threshold, ρ = -0.074; 99% threshold, ρ = 0.220. Red 
line: Exponentially modified Gaussian distribution. (E) Number of enhancers per promoter for 
correlations with ρ > 0.22. (F) Distribution of promoter-enhancer pair correlations. Distribution values: 
mean, 0.028; median, 0.019; variance, 0.004. Lines: Exponentially modified Gaussian distributions. 
(G) Distribution of promoter-enhancer distances for correlation ρ > 0.22. For promoters with multiple 
enhancers, only the highest-correlated one was considered. Of these promoter-enhancer pairs 72 % 
(CLL) and 74 % (NBC) derived from our scATAC-seq analysis were listed also in the 4D Genome data 
base (https://4dgenome.research.chop.edu/Download.html) as interactions for Homo sapiens. When 
considering only 4D genome interactions within the 10%-90% distance range of all 4D genome 
interactions (7.23 kb to 429 kb), these numbers changed to 58 % (CLL) and 56 % (NBCs). 
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Appendix Figure S7. CLL TF network with linked deregulated chromatin modifiers and targets. 

A simplified TF network for CLL with associated chromatin modifiers and TF target genes from the 
enriched pathways is depicted (see also Fig 6C and Appendix Table S2). It was extracted from the 
complete CLL GREN (Dataset EV14) and included only factors with deregulated activity/expression 
between CLL and NBCs. Chromatin modifiers were selected by intersecting the genes deregulated in 
CLL with the Epifactors database (Medvedeva et al, 2015). From this set, genes were chosen that had 
activities linked to the deregulated chromatin features identified in our study (meC loss, H3K27ac 
loss/gain and H3K4me3 loss/gain, see Fig 6B) and were linked to the TFs identified in the core network. 
These chromatin modifiers were grouped according to histone modification type and association into 
known complexes. The latter includes the two main repressive HDAC containing complexes SIN3 and 
NuRD (Ahringer, 2000) that have been associated with crucial functions in oncogenesis and cancer 
progression (Lai & Wade, 2011). Furthermore, we find a number of deregulated subunits of the 
chromatin remodeling complex SWI/SNF (BAF) in our network. The 15 subunits of this complex are 
frequently found to be mutated in human cancers and play an important role in transcriptional activation 
(Kadoch & Crabtree, 2015). It is noted that loss of SWI/SNF activity leads to a loss of H3K27ac and 
enhancer activity via interaction of SWI/SNF with p300 (Alver et al, 2017; Hodges et al, 2018). This 
connection between SWI/SNF and H3K27ac at enhancers is indicated in the network by a blue line. 
IKZF1 protein is linked to FOXP1, EGR1 and NFATC1 and has been reported to target both the NuRD 
and SWI/SNF complexes to chromatin (O'Neill et al, 2000). Finally, a recent reports shows that 
enhancer binding of basic helix-loop-helix TFs recognizing the E box site was dependent on TET2 
(Rasmussen et al, 2019), which showed an increased activity in CLL and displayed a link to TCF12 in 
our network. 
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Appendix Figure S8. Analysis of EBF1 binding by ChIP-seq. 

(A) Overlap of regions that lost EBF1 ChIP-seq and ATAC-seq signal in CLL at enhancers containing 
the EBF1 motif. (B) Unsupervised clustering of EBF1 ChIP-seq read occupancy. EBF1 was detected 
at 5358 loci in CLL cells and 6298 sites in NBCs. CLL and NBC samples were clearly separated based 
on the EBF1 ChIP-seq signal. (C) ChromHMM annotation of EBF1 peaks lost in CLL (n = 840) and 
gained in CLL (n = 173).  Loss of EBF1 predominantly occurred at the transcription start site (Act1 state) 
and at putatively poised enhancers (Pois state), while EBF1 binding was gained mainly at active, genic 
sites (Act 3 state). (D) MA-plot of differentially occupied EBF1 ChIP-seq regions. A large scale loss of 
EBF1 binding activity in CLL was observed. (E) Annotation of EBF1 regulated genes. The enrichment 
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of GO terms of lost EBF1 binding regions at enhancers points to a role of EBF1 in immune response, 
immune system process, cell activation and regulation of protein transport. (F) Analysis of EBF1 binding 
to predicted enhancers of its target genes MICAL3 and NIN. Both genes displayed a loss of EBF1 
binding at their enhancers H1000 and H441 as predicted from our CLL GREN. Similar to H464 of 
SNX22 (Fig 6E) these enhancers were active in NBCs but inactive in CLL. For enhancer H401 of NIN, 
no differential EBF1 binding was detected (data not shown). Thus, 3 out of 4 of EBF1 target genes with 
silenced enhancers in CLL displayed a loss of EBF1 binding in the ChIP-seq analysis, which was 
predicted from our network. 
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